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Abstract — In this work, the construction of solutions to
general transient EM problems in terms of two collinear
vector potentials (VPs) is subjected to a careful theoretical
study and numerical verification. The problems are
considered to be general in the sense that the medium can be
inhomogeneous, lossy and may contain sources. Anisotropy is
not considered in this paper. First, the completeness of the
solution in terms of the two VPs is addressed. Second, the
behavior of the VPs at interfaces and edges is investigated.
Finally, a number of simple but relevant numerical tests are
performed to verify the theoretical model. Thiswork is part
of the effort to establish the solid theoretical background of a
novel efficient method for the analysis of transient EM
propagation.

|. INTRODUCTION

It is well known that the electromagnetic (EM) field can
be described not only in terms of the field vectors but also
in terms of vector and scalar potentials. The following has
been stated for time-harmonic fields but it is aso true in
the genera transient case [1]: “an arbitrary field in a
homogeneous source-free region can be expressed as a
sum of a TM field and a TE field”. The TM (with respect
to the direction of an arbitrary unit vector C) field is
described by the magnetic vector potential (VP), A=¢A,
and the TE field is the one of the electric VP F =¢F .
Both potentials are solutions to the wave equation in time
domain (or the Helmholtz’ equation in the frequency
domain). Both vectors are collinear of fixed direction C.
Their magnitudes are sometimes referred to as wave
potentials.

To the author’ s knowledge, the formulation of a solution
to a general (lossy, inhomogeneous, involving sources)
transient EM problem in terms of vector potentials has
never been considered in detail probably because it was
deemed to be too complicated for practical purposes.
However, as it will be shown below, such analysis reveals
interesting properties of the VPs, which make their
implementation in practical numerical algorithms feasible
and very promising.

This work has its roots in previous research, which
resulted in the development of a time-domain algorithm

based on the magnetic vector potential A and the second-
order scalar wave equations of itsthree spatial components
[2]. Another algorithm based on a single VP was reported
in [3]. However, first applications of a pair of collinear
VPs of fixed direction, which solved the wave equations
for just two scalar wave potentials, were shown only
recently [4].

These first applications in the form of afinite-difference
algorithm revealed several problems, which needed further
careful study. The choice of the direction of the VPs was
crucial when dielectric interfaces were present, especially
between regions, whose dielectric constants would differ
significantly (by a factor of four and more). This choice
was also important when corners and edges were present.
It became obvious that the bottleneck is the formulation of
the boundary conditions for the VPs. These observations
made it imperative that a general model of the VP
propagation is developed, which gives a clear picture of
their behavior at material interfaces and inhomogeneities.

Il. GENERAL VECTOR POTENTIAL EQUATIONS

One starts with the introduction of the magnetic VP A
and the electric VP F as:

Ar=Llvxa EF
yZi

Here, H” isthe magnetic field vector of afield associated
with electric sources only (V-B* =0). The EF vector is
the electric field associated with magnetic sources only
(V-DF =0). Their counterparts, E* and HF, will be
found by substitution in Maxwell’s equations. The total
field is a superposition of (E*,H”) and (EF,H"). Note
that this implies linear media. The next step is to
substitute (1) in Maxwell’s equations and split them into
two systems of eguations as shown below.
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In the above transformations, the following identities have
been used:

w{%vw&j:v{w[éj_v[%jx/&}

_ (4)
Vx(le ﬁj:Vxl:Vx[Ej—VEij If}
€ £ €
From the first equation in (2) it follows that
HF :-a—F—V\n[vlj A-ZE, (5)
ot u €
and from the second equation in (3) it follows that
EAz-a—A—vq»[Vij F-m A ©)
ot £ U

Note the cross-coupling between the F-field and the A-
potential and the A-field and the F-potential due to the
constants non-zero gradients.  This cross-coupling
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appears also in the governing equations of the VPs given
below. If one applies Lorentz’ gauge to the functions
Alu and F/e (instead of A and F):
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€ u ot ¢ U £ ot u
one arrives at their general wave equations:
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The following important conclusions can be made from
equations (8) and (9). 1) Collinear VPs, which are normal
to dielectric/magnetic/loss interfaces, are not mutually
coupled. The scattering of the VP pair at an orthogonal
interface can be fully described by two scalar quantities:
the magnitudes of the VPs. However, if the VP pair has
tangential components at an interface, they will be
mutually coupled. They will be indirectly coupled to their
normal components, too. One has to consider all six
coupled components, which makes the problem too
complicated. 2) A normal to an interface component of a

VP will never give rise to a tangential component of its
own. On the contrary, a tangential to a dielectric interface
component A, will generate a normal component A, .
Same holds for F at magnetic interfaces.

In addition, further analysis shows that the boundary
conditions (BCs) at conducting edges of a pair of VPs,
which are tangential to the edge, are well posed.
Homogeneous Dirichlet condition is imposed on the
magnetic VP, A =0, regardless of the direction from
which the edge is approached. A homogeneous Neumann
condition is imposed on the electric VP, dF,/dn=0,
where A is any direction norma to the edge. On the
contrary, if a VP is orthogonal to the edge, its boundary
conditions are ill posed. They do depend on the direction
from which the edge is approached. For example, at an x-
directed edge (or wedge), oF,/dy=0 when the
observation point approaches the edge along the y-axis.
However, when the observation point approaches the edge
along the z-axis, the BC is a Dirichlet one: F,=0. Such
ill-posed BCs degrade the performance of numerical
agorithms based on finite discrete meshes.

To summarize, if one can keep the VPs norma to
interfaces and tangential to edges and wedges, two scalar
quantities (the magnitudes of two collinear VPs) will be
sufficient to describe the total field behavior without
having to take care of mode coupling. It is now obvious
that in order to solve practical problems involving material
interfaces, edges and corners, in a robust and smple
manner, one cannot keep the direction of the VP pair
constant in space.

I11. MODE EQUIVALENCE

The above conclusion makes it imperative to study the
transitions between pairs of VPs. These transitions are
possible and there are clear rules to carry them out in a
homogeneous medium, at least in the case of mutually
orthogonal VP pairs. Thus, the computational region can
be divided into domains of constant direction of the VP
pair, such that mode coupling is avoided. This mode
coupling will be taken care of in an implicit manner by the
transition equations at the mutual boundaries of the
neighboring domains. The mode equivalence has been
also studied in order to prove the completeness of the
solution to an EM problem in terms of a pair of collinear
VPs. However, this proof will not be considered here for
the sake of brevity.

Assume that a pair (A, F,) is to be related to a

(A, Fy) par or to a (A,,F,) par in a neighboring

domain. This has to be done in such a way that the field
components expressed in terms of the (A, F,) pair arethe

same as those expressed in terms of the orthogonal pair
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TABLEI
SUMMARY OF MODE EQUIVALENCE FORMULAS IN HOMOGENEOUS REGIONS

IV. FINITE-DIFFERENCE IMPLEMENTATION

Field component | (A, F,) (AF) (A F,)
-E, oA +9,D, 0,@,-d,F /e 0@, +9,F, /¢
-E, d,@,+d,F /¢ A +9,D, 9,@,-0,F, /¢
-E, d,0,-9d,F /¢ 2,0, +0,F, /¢ 0;A, +0,0,
-H, oF, +0, ¥, 0¥y +d,A u oW, -9 A1
-H, Wy -9, Al u o Fy+0,¥, 9,\W,+0,A, I u
-H, 9, ¥, +9,Alu d,¥, -9, A lu oF,+d,%¥,

| y A
(either (A,,F,) or (A,,F,)). The transtion from one 8““
pair to another is done using the longitudinal field : R A
components, which depend on a single potential (see the (i.i1K) A
highlighted formulasin the Table 1). [ &

The introduction of sub-regions of constant direction of rS E ® A
the VP pair eliminates the complications arising from Fo o (e el
mode coupling. It makes the proposed theoretical model i@ E ,..f'.'(fi,
efficient and applicable to the solution of practical EM : vy AT LA

. ) ) . A [ ® d
problems. It is clearly simpler to implement in cases of (11D o l@TLal_
predominantly homogeneous regions with planar interfaces d (.-'fik
such as layered structures. | ! . s 2
//(l—l‘J—l,k) (i-Lj k) X“Myk)
A®

Central differences are used throughout the algorithm
based on the finite-difference discretization of the wave
equations of the VPs and the transition formulas given in
Table 1. Every two collinear VPs are displaced by half a
step along all three axes (see Fig. 1). Besides, the
magnetic VPs are displaced by half a step in time with
respect to the electric VPs.

The boundary conditions at dielectric and magnetic
interfaces are automatically satisfied by the VP functions,
which are normal to these interfaces. Because of the
continuity of the tangential E, field and the continuity of
the tangential H, field, it can be shown that the functions:

B 2(A) B g 0[5
u onlu) e’ onl g )’

are aso continuous across dielectric and magnetic
interfaces. Here, d/dn denotes differentiation with
respect to the interface unit normal A. Therefore, the
values of the VPs at the interfaces are calculated using the
general equations in (8) and (9). The F, equation at
dielectric interfaces and the A, equation at magnetic
interfaces do not differ from their respective equations in
points of zero £ and u gradients. The A, equation at
dielectric interfaces differs from the respective zero-

(i-1,j k-1)

Fig. 1. A discretization cell showing the location in space of the three
possible VP pairsin arectangular coordinate system.

gradient equation by its modified V? operator as dictated
by (8). For example, if A= X, then the Laplacian operator
inthe A, equation isreplaced by:

(A ), e _ye (A2 (10 A
v [7}(%)?@[#}8&[8& ,Jﬂo)

where Vi =02 +0%,. The equation for F, isdual to the

A, equation.

According to the number of operations per cell, in its
finite-difference implementation, the algorithm would
reguire 2/3 of the computation time and 2/3 of the memory
requirements of the Yee-cell FDTD agorithm. Stability
criteria, discretization cell size and excitation waveforms
are chosen exactly asin the conventional FDTD algorithm.

V. NUMERICAL TESTS

There are two important issues, which have been tested
numerically. The first one is the transition between
domains with different direction of the VP pair. The
second one is the correct field representation at edges and
corners.
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Fig. 2. Impedance and wavel ength computations for a waveguide using a
middle domain with three different VP pairs: with lines— analytical
calculations; with line-points — numerical tests.

A. Transitions between domains

The transition between VP pairs of different (orthogonal)
directions has been tested in homogeneous problems since
the domain boundaries in the general agorithm are always
at least 2 cells away from inhomogeneities. One of the test
structures is shown in Fig. 2. Thisis a hollow waveguide
of rectangular cross-section excited with a dominant TEy;
distribution of the E, component whose waveform is a

sine wave modulated by Blackman-Harris window. The
input and output sections are the domains of the (A,,F,)

pair. The middle section supports: the (A,,F,) pair in the
first experiment, the (A,F,) par in the second
experiment, and the (A, F,) pair in the third experiment.

In al three experiments, the wave impedance and the
wavelength were calculated to compare with the analytical
formulas. The results of al three experiments are
practically indistinguishable from each other, and they
deviate only dightly from the analytical calculations at low
frequencies, close to cut-off (see Fig. 2).

A second test was performed on an open problem: an
infinitesimally thin dipole antenna, where the middle
domain centered onto the antenna has al its six walls
bordering domains whose VPs are orthogonal to those in
the middle domain. The current distribution (at different
frequencies) is compared with the current distribution
obtained when the problem is solved using only one
potential: the magnetic VP component tangential to the
dipole (see Fig. 3).

B. Dielectric interfaces, edges and corners

These tests include: H-plane and E-plane waveguide
bends, waveguide post, partialy filled waveguide,
microstrip line and fin-line.
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Fig. 3. Current distribution along half the length of awire dipole: with

lines — single potential; with points — computational region divided into

7 domains.

V1. CONCLUSION

In this work, the construction of solutions to genera
transient EM problems in terms of two collinear vector
potentials (VPs) is considered. It is shown that as long as
the gradient of the electromagnetic properties of the
analyzed region coincides with the direction of the VPs,
the solution can be built only on two scalar quantities: the
magnitudes of the VPs. Such arestriction on the gradient
of the material constants would severely limit the
applicahility of the method if VPs of fixed direction were
used throughout the volume. However, it has been shown
that there are no theoretical obstacles for the utilization of
VPs of different directions in different sub-regions of the
analyzed volume. The method is implemented in a finite-
difference algorithm, which has better computational
efficiency than the conventional FDTD technique and is
comparable to it with respect to versatility and ease of
implementation.
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